

# HYDROMECHANICAL™

### Innovation revealed

The Hydromechanical™ Setting Tool is utilized to set composite cement retainers and circulate cement without the need for rotation or multiple trips. Setting is accomplished by applying a combination of hydraulic pressure and upstrain. The setting tool is deployed into the well using coiled tubing, tubing, or drill pipe.

## Features .....

- · Automatically balances with wellbore fluid
- · Hydraulically activated by applied pressure
- · Can set retainer, test, and circulate cement in a single trip
- · No rotation required
- · No ballistics required
- Patent Pending Technology
- · Coiled tubing, tubing, or drill pipe conveyed
- Redress kits available
- Can be used with Collet or Poppet-Style Magnum Series Retainers
- No wet string pull-outs
- · Single stage hydraulic piston
- · Can withstand high tensile loads

## **Operations**

While running into the well, the tool automatically fills with well bore fluid and remains balanced. When setting depth is reached, a ball bearing is released down the work string. A circulation rate can then be established to aid in pumping the ball bearing down into its mating seat inside the setting tool. When the ball bearing is fully seated, a pressure buildup will be noted. Pressure is increased to a predetermined amount until both the upper and lower slips have deployed. Then, while maintaining pressure, upstrain is applied to the work string until shear-off occurs. The retainer is now set.



The Hydromechanical  $^{\text{TM}}$  is utilized to set composite cement retainers and circulate cement without the need for rotation or multiple trips.



## 4.50 Hydromechanical Setting Tool

Magnum Series Composite

Cement Retainers supported: 4.00", 4.50", and 5.00"

Piston Area: 4.71 in<sup>2</sup> effective surface area

Activation Screw Shear Value: 295 PSI/screw Ball Seat Screw Shear Value: 650 PSI/screw

Requirements for setting: 2 7,000 lbs (shear off force) - (Applied PSI @ surface X piston area) = Upstrain at tool

Example: Assume: Shear off force = 27,000 lbs; Max applied surface pressure = 3,000 PSI

27,000 lbs - (3,000 PSI X 4.71 in<sup>2</sup>) = 12,867 lbs (required upstrain at tool)

## 5.50 Hydromechanical Setting Tool

Magnum Series Composite

Cement Retainers supported: 5.50"

Piston Area: 6.88 in<sup>2</sup> effective surface area

Activation Screw Shear Value: 490 PSI/screw
Ball Seat Screw Shear Value: 1,085 PSI/screw

Requirements for setting: 40,000 lbs (shear off force) - (Applied PSI @ surface X piston area) = Upstrain at tool

Ball Seat Screw Shear Value: 4 stage: 275 PSI/screw; 5 stage: 225 PSI/screw

Example: Assume: Shear off force = 40,000 lbs; Max applied surface pressure = 3,000 PSI

 $40,000 \text{ lbs} - (3,000 \text{ PSI X } 6.881 \text{ in}^2) = 19,357 \text{ lbs (required upstrain at tool)}$ 

### 7.00 Hydromechanical Setting Tool

Magnum Series Composite

Cement Retainers supported: 6.625", 7.000", and 7.625"

Piston Area: 6.88 in<sup>2</sup> effective surface area

Activation Screw Shear Value: 490 PSI/screw Ball Seat Screw Shear Value: 690 PSI/screw

Requirements for setting: 45,000 lbs (shear off force) - (Applied PSI @ surface X piston area) = Upstrain at tool

Example: Assume: Shear off force = 45,000 lbs; Max applied surface pressure = 3,000 PSI

 $45,000 \text{ lbs} - (3,000 \text{ PSI X } 6.88 \text{ in}^2) = 24,357 \text{ lbs (required upstrain at tool)}$ 

| Tool Size<br>inch<br>(mm) | Standard<br>Connection<br>inch<br>(mm) | Overall Length<br>of Collet Style<br>inch<br>(mm) | Overall Length<br>of Poppet Style<br>inch<br>(mm) | O.D.<br>inch<br>(mm) | Ball Size<br>inch<br>(mm) | Ball Seat ID<br>inch<br>(mm) | Stroke Length<br>inch<br>(mm) | Temperature<br>Rating |
|---------------------------|----------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------|---------------------------|------------------------------|-------------------------------|-----------------------|
| 4.500<br>(114.3)          | 2-3/8<br>(60.3)<br>EU 8RD              | 60.29<br>(1,531.4)                                | 50.09<br>(1,272.3)                                | 3.570<br>(90.7)      | 0.625<br>(15.9)           | 0.438<br>(11.1)              | 8.95<br>(227.3)               | 400°F<br>(204°C)      |
| 5.500<br>(139.7)          | 2-3/8<br>(60.3)<br>EU 8RD              | 69.38<br>(1,762.3)                                | 65.73<br>(1,669.5)                                | 4.380<br>(111.3)     | 0.875<br>(22.2)           | 0.625<br>(15.9)              | 10.21<br>(259.3)              | 400°F<br>(204°C)      |
| 7.000<br>(177.8)          | 2-7/8<br>(73.0)<br>EU 8RD              | 75.62<br>(1,920.7)                                | 69.87<br>(1,774.7)                                | 5.750<br>(146.1)     | 0.875<br>(22.2)           | 0.625<br>(15.9)              | 10.21<br>(259.3)              | 400°F<br>(204°C)      |

For more information, and to find a representative near you, visit nineenergyservice.com